Ciclo hidrológico

Ciclo del agua (USGS).

El ciclo hidrológico o ciclo del agua es un ciclo biogeoquímico, en el cual hay un proceso de circulación del agua entre las distintas partes de la hidrósfera, permitiendo al agua pasar de un estado físico a otro mediante reacciones químicas.[1]

El agua dentro de la Tierra se encuentra en mayor parte forma líquida, en los océanos, mares y agua subterránea o de agua superficial como en los lagos, ríos y arroyos. La segunda fracción, por su importancia, es la del agua acumulada como hielo sobre los casquetes polares ártico y antártico, con una participación pequeña de los glaciares de montaña de latitudes altas y medias, y de la banquisa.[2]

Por último, una fracción menor está presente en la atmósfera, en estado gaseoso como vapor o nubes. Esta fracción atmosférica es muy importante para el intercambio entre los compartimentos para la circulación horizontal del agua, de manera que, se asegura un suministro permanente de agua, a las regiones de la superficie continental alejadas de los depósitos principales.[2]

El agua de la hidrósfera procede de la desgasificación del manto, donde tiene una presencia significativa, por los procesos del vulcanismo. Una parte del agua puede reincorporarse al manto con los sedimentos oceánicos de los que forma parte cuando éstos acompañan a la litosfera en subducción.[3]

Ciclo hidrológico

El agua existe en la Tierra en tres estados: sólido (hielo, nieve), líquido y gaseoso (vapor de agua). Océanos, ríos, nubes y lluvia están en constante cambio: el agua de la superficie se evapora, el agua de las nubes precipita, la lluvia se filtra por la tierra, etc. Sin embargo, la cantidad total de agua en el planeta no cambia. La circulación y conservación de agua en la Tierra se llama ciclo hidrológico, o ciclo del agua.

El ciclo hidrológico está dividido en dos ciclos: el ciclo interno y el ciclo externo. El ciclo interno consiste en lo siguiente: El agua de origen magmático formada mediante reacciones químicas en el interior de la tierra sale a través de volcanes y fuentes hidrotermales, y se mezcla con el agua externa. Se termina cuando el agua de los océanos se introducen por las zonas de subducción hasta el manto.

Cuando se formó, hace aproximadamente cuatro mil quinientos millones de años, la Tierra ya tenía en su interior vapor de agua. En un principio, era una enorme bola en constante fusión con cientos de volcanes activos en su superficie. El magma, cargado de gases con vapor de agua, emergió a la superficie gracias a las constantes erupciones. Luego la Tierra se enfrió, el vapor de agua se condensó y cayó nuevamente al suelo en forma de lluvia.

El ciclo hidrológico comienza con la evaporación del agua desde la superficie del océano. A medida que se eleva, el aire humedecido se enfría y el vapor se transforma en agua: es la condensación. Las gotas se juntan y forman una nube. Luego, caen por su propio peso: es la precipitación. Si en la atmósfera hace mucho frío, el agua cae como nieve o granizo. Si es más cálida, caerán gotas de lluvia.

Una parte del agua que llega a la superficie terrestre será aprovechada por los seres vivos; otra discurrirá por el terreno hasta llegar a un río, un lago o el océano. A este fenómeno se le conoce como escorrentía. Otro porcentaje del agua se filtrará a través del suelo, formando acuíferos o capas de agua subterránea, conocidas como capas freáticas. Este proceso es la infiltración. De la capa freática, a veces, el agua brota en la superficie en forma de fuente, formando arroyos o ríos. Tarde o temprano, toda esta agua volverá nuevamente a la atmósfera, debido principalmente a la evaporación.

Fases del ciclo hidrológico

Diagrama del ciclo hidrológico.

El ciclo del agua tiene una interacción constante con el ecosistema ya que los seres vivos dependen de esta para sobrevivir, y a su vez ayudan al funcionamiento del mismo. Por su parte, el ciclo hidrológico presenta cierta dependencia de una atmósfera poco contaminada y de un grado de pureza del agua para su desarrollo convencional, y de otra manera el ciclo se entorpecería por el cambio en los tiempos de evaporación y condensación.

Los principales procesos implicados en el ciclo del agua son:

Compartimentos e intercambios de agua

El agua se distribuye desigualmente entre los distintos compartimentos, y los procesos por los que éstos intercambian el agua se dan a ritmos heterogéneos. El mayor volumen corresponde al océano, seguido del hielo glaciar y después por el agua subterránea. El agua dulce superficial representa sólo una exigua fracción y aún menor el agua atmosférica (vapor y nubes).

Depósito
Volumen
(en millones de km³)
Porcentaje
Océanos 1 370 90,40386
Casquetes y glaciares 546 8,90
Agua subterránea 9,5 0,68
Lagos 0,125 0,01
Humedad del suelo 0,065 0,005
Atmósfera 0,013 0,001
Arroyos y ríos 0,0017 0,0001
Biomasa 0,0006 0,00004
Depósito
Tiempo medio de permanencia
Glaciares 20 a 100 años
Nieve estacional 2 a 6 meses
Humedad del suelo 1 a 2 meses
Agua subterránea: somera 100 a 200 años
Agua subterránea: profunda 10.000 años
Lagos 50 a 100 años
Ríos 2 a 6 meses

El tiempo de permanencia de una molécula de agua en un compartimento es mayor cuanto menor es el ritmo con que el agua abandona ese compartimento (o se incorpora a él). Es notablemente largo en los casquetes glaciares, a donde llega por una precipitación característicamente escasa, abandonándolos por la pérdida de bloques de hielo en sus márgenes o por la fusión en la base del glaciar, donde se forman pequeños ríos o arroyos que sirven de aliviadero al derretimiento del hielo en su desplazamiento debido a la gravedad. El compartimento donde la permanencia media es más larga, aparte el océano, es el de los acuíferos profundos, algunos de los cuales son «acuíferos fósiles», que no se renuevan desde tiempos remotos. El tiempo de permanencia es particularmente breve para la fracción atmosférica, que se recicla muy de prisa.

El tiempo medio de permanencia es el cociente entre el volumen total del compartimento o depósito y el caudal del intercambio de agua (expresado como volumen partido por tiempo); la unidad del tiempo de permanencia resultante es la unidad de tiempo utilizada al expresar el caudal.

Energía del agua

El ciclo del agua emite una gran cantidad de energía, la cual procede de la que aporta la insolación. La evaporación es debida al calentamiento solar y animada por la circulación atmosférica, que renueva las masas de aire y que es a su vez debida a diferencias de temperatura igualmente dependientes de la insolación. Los cambios de estado del agua requieren o disipan mucha energía, por el elevado valor que toman el calor latente de fusión y el calor latente de vaporización. Así, esos cambios de estado contribuyen al calentamiento o enfriamiento de las masas de aire, y al transporte neto de calor desde las latitudes tropicales o templadas hacia las frías y polares, gracias al cual es más suave en conjunto el clima.

Balance del agua

Si despreciamos las pérdidas y las ganancias debidas al vulcanismo y a la subducción, el balance total es cero. Pero si nos fijamos en los océanos, se comprueba que este balance es negativo; se evapora más de lo que precipita en ellos. Y en los continentes hay un superávit; es decir que se precipita más de lo que se evapora. Estos déficit y superávit se compensan con las escorrentías, superficial y subterránea, que vierten agua del continente al mar.

El cálculo del balance hídrico puede realizarse sobre cualquier recipiente hídrico, desde el balance hídrico global del planeta hasta el de una pequeña charca, pero suele aplicarse sobre las cuencas hidrográficas.

Estos balances se hacen para un determinado periodo de tiempo.

Cuando se consideran periodos de tiempo largo, la mayoría de los sistemas presentan un balance nulo, es decir las salidas igualan las entradas.

Efectos químicos del agua

El agua, al recorrer el ciclo hidrológico, transporta sólidos y gases en disolución. El carbono, el nitrógeno y el azufre, elementos todos ellos importantes para los organismos vivientes, unos son volátiles (algunos como compuestos) y solubles, y por lo tanto, pueden desplazarse por la atmósfera y realizar ciclos completos, semejantes al ciclo del agua y otros solo solubles por lo que solo recorren la parte del ciclo en que el agua se mantiene líquida.

La lluvia que cae sobre la superficie del terreno contiene ciertos gases y sólidos en disolución. El agua que pasa a través de la zona insaturada de humedad del suelo recoge dióxido de carbono del aire y del suelo y de ese modo aumenta de acidez. Esta agua ácida, al llegar en contacto con partículas de suelo o roca madre, disuelve algunas sales minerales. Si el suelo tiene un buen drenaje, el flujo de salida del agua freática final puede contener una cantidad importante de sólidos disueltos, que irán finalmente al mar.

En algunas regiones, el sistema de drenaje tiene su salida final en un mar interior, y no en el océano, son las llamadas cuencas endorreicas. En tales casos, este mar interior se adaptará por sí mismo para mantener el equilibrio hídrico de su zona de drenaje y el almacenamiento en el mismo aumentará o disminuirá, según que la escorrentía sea mayor o menor que la evaporación desde el mismo. Como el agua evaporada no contiene ningún sólido disuelto, éste queda en el mar interior y su contenido salino va aumentando gradualmente.

Salinización de los suelos por evaporación.

Si el agua del suelo se mueve en sentido ascendente, por efecto de la capilaridad, y se está evaporando en la superficie, las sales disueltas pueden ascender también en el suelo y concentrarse en la superficie, donde es frecuente ver en estos casos un estrato blancuzco producido por la acumulación de sales.

Cuando se añade agua de riego, el agua es transpirada, pero las sales que haya en ésta quedan en el suelo. Si el sistema de drenaje es adecuado, y se suministra suficiente cantidad de agua en exceso, como suele hacerse en la práctica del riego superficial, y algunas veces con el riego por aspersión, estas sales se disolverán y serán arrastradas al sistema de drenaje. Si el sistema de drenaje falla, o la cantidad de agua suministrada no es suficiente para el lavado de las sales, éstas se acumularán en el suelo hasta tal grado en que las tierras pueden perder su productividad. Éste sería, según algunos expertos, la razón del decaimiento de la civilización Mesopotámica, irrigada por los ríos Tigris y Éufrates con un excelente sistema de riego, pero con deficiencias en el drenaje.

Véase también

Referencias

  1. «Ciclo hidrológico.». LIMA-PERÚ. 2011. Consultado el 27 de noviembre de 2015..
  2. 1 2 Pidwirny, M. (2006). «The Hydrologic Cycle.». Fundamentals of Physical Geography 2nd Edition. Consultado el 27 de noviembre de 2015.
  3. Los sistemas terrestres y sus implicaciones medioambientales. Escrito por Carlos Ayora Ibáñez en Google Libros.

Bibliografía

This article is issued from Wikipedia - version of the Wednesday, February 10, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.