Anexo:Glosario de topología

Esto es un glosario de algunos términos que se usan en la rama de la matemática conocida como topología. Este glosario estará centrado fundamentalmente en lo que podemos llamar la topología general y en las definiciones que sean importantes para varias áreas. Puedes ver el artículo sobre espacios topológicos para consultar las definiciones básicas y algunos ejemplos, y también el artículo "Topología" para tener una descripción introductoria de la materia.

Añadimos los siguientes artículos que te pueden también resultar de utilidad, que contienen vocabulario especializado o bien dan más detalles acerca de lo que exponemos en este glosario.

En este artículo cuando digamos "espacio" queremos decir espacio topológico, a no ser que digamos otra cosa.

Las entradas del glosario a veces van por el adjetivo, por ejemplo, punto aislado está en la "a", espacio de Sierpinski en la "s", esto es, cuando a un concepto más común, como punto, espacio, etc, le añadimos algo, esto último regirá la correspondiente entrada del diccionario.

Índice
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • Ñ
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z

A

B

C

Dado un subconjunto compacto K\subset X y un subconjunto abierto U\subset Y denotemos con V_{K,U} al conjunto de todas las funciones f\in  C(X,Y) tales que f(K)\subset U. La topología se obtiene tomando la colección de todos los V_{K,U} como subbase de la topología.

D

E

F

G

H

I

K

  1. isotonicidad: cada conjunto A está contenido en su adherencia C(A).
  2. Idempotencia: la adherencia de un conjunto A (C(A)) es igual a la adherencia de C(C(A)).
  3. Preservación de uniones binarias: la adherencia de una unión de dos conjuntos es la unión de sus adherencias.
  4. Preservación de uniones "nulas": La adherencia del conjunto vacío es vacía.


L

M

  1. d(x, y) ≥ 0
  2. d(x, x) = 0
  3. si   d(x, y) = 0   entonces   x = y     (identidad de indiscernibles)
  4. d(x, y) = d(y, x)     (simetría)
  5. d(x, z) ≤ d(x, y) + d(y, z)     (desigualdad triangular)
La función d se llama métrica en M.

N

P

R

S

T

  1. El conjunto vacío y X están en T.
  2. La unión de cualquier colección de conjuntos en T está también en T.
  3. La intersección de cualquier par de conjuntos en T está también en T.
La colección T se llama topología en X. Decimos que X es un espacio topológico porque hemos dado una topología (T) en él.

U

  1. si U está en Φ, entonces U contiene { (x, x) | x en X }.
  2. si U está en Φ, entonces { (y, x) | (x, y) en U } está también en Φ
  3. si U está en Φ y V es un subconjunto de X × X que contiene a U, entonces V está en Φ
  4. si U y V están en Φ, entonces UV está en Φ
  5. si U está en Φ, entonces existe V en Φ tal que, para cualesquiera (x, y) y (y, z) que estén en V, entonces (x, z) está en U.
Los elementos de Φ son llamados entourages, y Φ en sí mismo se dice estructura uniforme en U.

V

n-variedad, variedad diferenciable

Referencias y anotaciones

  1. Concordado con Topología de Munkres
  2. Para evitar la redundancia, 'colección' con acepción técnica
  3. Dieudonné: Fundamentos de análisis moderno, Editorial Reverté S.A., Zaragoza (1966)
This article is issued from Wikipedia - version of the Thursday, January 15, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.