Grafo bipartito

Ejemplo de grafo bipartito.

En teoría de grafos, un grafo bipartito es un grafo G=(N,E) cuyos vértices se pueden separar en dos conjuntos disjuntos U y V, es decir, tal que se cumple:

  • U \cup V = N
  • U \cap V = \emptyset

de manera que las aristas sólo pueden conectar vértices de un conjunto con vértices del otro; es decir:

Los grafos bipartitos suelen representarse gráficamente con dos columnas (o filas) de vértices y las aristas uniendo vértices de columnas (o filas) diferentes.

Los dos conjuntos U y V pueden ser pensados como un coloreo del grafo con dos colores: si pintamos los vértices en U de azul y los vértices de V de verde obtenemos un grafo de dos colores donde cada arista tiene un vértice azul y el otro verde. Por otro lado, si un gráfico no tiene la propiedad de que se puede colorear con dos colores no es bipartito.

Un grafo bipartito con la partición de los vértices en U y V suele denotarse G = (U, V, E). Si |U| =|V|, esto es, si los dos subconjuntos tiene la misma cantidad de elementos o cardinalidad, decimos que el grafo bipartito G es balanceado.

Ejemplos

Véase también

This article is issued from Wikipedia - version of the Monday, August 12, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.