Meteorización

Se llama meteorización a la descomposición de minerales y rocas que ocurre sobre o cerca de la superficie terrestre cuando estos materiales entran en contacto con la atmósfera, hidrósfera y la biósfera. Sin embargo existen varias definiciones más, lo que ha hecho que el término signifique diferentes cosas para distintos científicos.[1] Ejemplo de otras definiciones son:

La meteorización representa la respuesta de minerales que estaban en equilibrio a profundidades variables en la litosfera a condiciones de la superficie terrestre o cerca de esta. En este lugar los minerales entran en contacto con la atmósfera, hidrosfera y biosfera originando cambios, generalmente irreversibles, que los tornan hacia un estado más clástico o plástico de manera que aumenta el volumen, disminuye la densidad y el tamaño de las partículas además de formase nuevos minerales que son más estables bajo las condiciones de interfaz.


Chorley et al.[2]
Ejemplo de una roca meteorizada. Se observa que su exterior se ha oxidado a causa de la meteorización química y además se ha partido en dos probablemente debido a meteorización física.

La meteorización es la desintegración y descomposición de las rocas, que originan, in situ, una masa de derrubios.


E.J. Monkhouse[3]

Es el proceso o grupo de procesos destructivos mediante los cuales materiales terrosos o rocosos cambian de color, textura, composición, firmeza o forma al ponerse en contacto con agentes atmosféricos, todo esto con poco o nada de transporte del material aflojado o alterado.


Glossary of Geology[4]

Existen principalmente dos tipos de meteorización: la meteorización química y la meteorización física.[5] A veces se incluye la meteorización biológica como un tercer tipo.[1] La meteorización se considera como un proceso exógeno y es importante entre otras cosas para el estudio de las formas del relieve y también para entender los suelos y sus nutrientes.[5]

Se pueden considerar los 100 °C y 1 kbar como la temperatura y presión máxima bajo las cuales la meteorización ocurre.[1]

Meteorización física

Canchal posiblemente formado por gelifracción en estratos casi horizontales de piedra caliza en la isla Flowerpot, Ontario, Canadá.

La meteorización física produce desintegración o ruptura en la roca, sin afectar a su composición química o mineralógica. En estos procesos la roca se va fracturando, es decir, se va disgregando en materiales de menor tamaño y ello facilita el proceso de erosión y transporte posterior. Las rocas no cambian sus características químicas pero sí las físicas. Está causada por las condiciones ambientales (agua, calor, sal, etc.). Los agentes que la provocan son:

Meteorización química

Un yagrumo (Cecropia peltata) crece en la pared del Monumento a la Batalla de la Puerta, en Venezuela, y muestra la acción sobre la disolución del cemento y de la roca caliza del propio monumento por la acción de los ácidos de sus raíces.

Produce una transformación química de la roca provocando la pérdida de cohesión y alteración de la roca. Los procesos más importantes son los atmosféricos, el vapor de agua, el oxígeno y el dióxido de carbono que están implicados en:

Los nidos hechos en el suelo por las termitas (Isoptera) en la Gran Sabana (Venezuela) generan una alteración considerable de los minerales del suelo y del subsuelo. Esta alteración favorece el crecimiento de algunas plantas en la mayoría de los termiteros abandonados.

Laterización

La laterización consiste en un proceso de meteorización química generalizada y profunda en la que el sílice y las bases son extraídas, por la lixiviación (lavado) de la roca madre, en la que se producen concreciones de hierro y aluminio. Son depósitos residuales de color rojo asociados a relieves de superficie plana. En realidad el proceso no se circunscribe solo a la formación de suelo (latosoles) sino que es un auténtico proceso morfogenético. Régimen de formación de un suelo (pedogenético) que se da en climas cálidos, con precipitaciones abundantes, tanto en las regiones de selva como en las de sabana, donde una gran actividad bacteriana hace que el humus se consuma con rapidez. Los minerales arcillosos se disuelven, mientras que el hierro y el aluminio se acumulan en forma de óxidos y dan lugar a la formación de una costra dura, llamada laterita (del latín later, ladrillo). No son suelos fértiles.

Meteorización biológica

Algunos seres vivos contribuyen a transformar las rocas. Así, las raíces de las plantas se introducen entre las grietas actuando de cuñas. Al mismo tiempo segregan sustancias que alteran químicamente las rocas, como puede verse en la imagen: la decoloración de la pared por la acción de los ácidos (carbónico y de otros tipos) de las raíces nos muestra claramente este proceso. También algunos animales, como las lombrices de tierra, las hormigas, las termitas, los topos, etc., favorecen la alteración in situ de las rocas en la superficie.

A ese tipo de alteración, a veces química, que realizan los seres vivos la llamamos meteorización externa.

La meteorización productora de suelos

La meteorización desintegra las rocas existentes y aporta materiales para formar otras nuevas. Sin embargo, la meteorización desempeña también un papel importantísimo en la creación de los suelos que cubren la superficie de la Tierra y sustentan toda vida. Un suelo refleja, hasta cierto grado, el material rocoso del cual se derivó, pero la roca basal no es el único factor que determina el tipo de suelo, ya que diferentes suelos se desarrollan sobre rocas idénticas en áreas distintas cuando el clima varía de un área a otra. Por lo tanto, otros factores ejercen influencias importantes sobre el desarrollo del suelo, como el relieve, el tiempo y el tipo de vegetación. La composición de un suelo varía con la profundidad. El afloramiento natural o artificial de un suelo revela una serie de zonas diferentes entre sí. Cada una de estas zonas constituye un horizonte, que representan, desde la superficie hacia adentro, las capas más meteorizadas o descompuestas y con diferentes acumulaciones de minerales por lixiviación o lavado del suelo, hasta llegar a la roca madre o fresca, de la cual se derivó el suelo. Estos horizontes de suelo se han desarrollado a partir del material original subyacente. Cuando este material queda expuesto por vez primera en la superficie, la parte superior queda sujeta a la meteorización intensa y la descomposición actúa rápidamente. Conforme avanza la descomposición del material, el agua que percola hacia abajo comienza a lixiviar algunos de los minerales y los deposita en niveles inferiores, los cuales con el paso del tiempo, se vuelven más gruesos y alcanzan mayores profundidades.[6]

Véase también

Referencias

  1. 1 2 3 Hall, Kevin; Thorn, Colin; Summer, Paul (2012). «On the persistence of ‘weathering’». Geomorphology (en inglés). 149-150: 1–10.
  2. Chorley, R.J.; Schumm, S.A.; Sugden, D.E. (1984). Geomorphology (en inglés). Londres: Methuen. p. 605.
  3. E. J. Monkhouse. (1978). Diccionario de términos geográficos. Barcelona: Oikos Tau-Editores. p. 300.
  4. Glossary of Geology, Fifth Edition. 2005. Edited by Neuendorf, K.K.E., Mehl, Jr. J.P., Jackson, J.A. American Geological Institute, Alexandria, VA. 779 p. 718.
  5. 1 2 Summerfield, M.A. (1991). Global Geomorphology (en inglés). Pearson Education Ltd. pp. 129–130. ISBN 0-582-30156-4.
  6. Geomorfología Fluvial Universidad del Cauca. Colombia. Consultado el 16/09/2013

Bibliografía

Enlaces externos

This article is issued from Wikipedia - version of the Monday, November 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.