Sucesión de Fibonacci

En matemáticas, la sucesión de Fibonacci (a veces llamada erróneamente serie de Fibonacci) es la siguiente sucesión infinita de números naturales:

{\textstyle 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597
\ldots \,}
Gráfica de la sucesión de Fibonacci hasta f_{10}
La espiral de Fibonacci: una aproximación de la espiral áurea generada dibujando arcos circulares conectando las esquinas opuestas de los cuadrados ajustados a los valores de la sucesión;[1] adosando sucesivamente cuadrados de lado 1, 1, 2, 3, 5, 8, 13, 21 y 34.

La sucesión comienza con los números 0 y 1,[2] y a partir de estos, «cada término es la suma de los dos anteriores», es la relación de recurrencia que la define.

A los elementos de esta sucesión se les llama números de Fibonacci. Esta sucesión fue descrita en Europa por Leonardo de Pisa, matemático italiano del siglo XIII también conocido como Fibonacci. Tiene numerosas aplicaciones en ciencias de la computación, matemáticas y teoría de juegos. También aparece en configuraciones biológicas, como por ejemplo en las ramas de los árboles, en la disposición de las hojas en el tallo, en las flores de alcachofas y girasoles, en las inflorescencias del brécol romanesco y en la configuración de las piñas de las coníferas.

Historia

Mucho antes de ser conocida en occidente, la sucesión de Fibonacci ya estaba descrita en las matemáticas de la India, en conexión con la prosodia sánscrita.[3][4]

Susantha Goonatilake hace notar que el desarrollo de la secuencia de Fibonacci "es atribuido en parte a Pingala (año 200), posteriormente asociado con Virahanka (hacia el año 700 ), Gopāla (hacia 1135), y Hemachandra (hacia 1150)".[5] Parmanand Singh cita a Pingala (hacia 450) como precursor en el descubrimiento de la secuencia.[6]

La sucesión fue descrita y dada a conocer en occidente por Fibonacci como la solución a un problema de la cría de conejos: «Cierto hombre tenía una pareja de conejos en un lugar cerrado y deseaba saber cuántos se podrían reproducir en un año a partir de la pareja inicial, teniendo en cuenta que de forma natural tienen una pareja en un mes, y que a partir del segundo se empiezan a reproducir».[7]

Número de Mes Explicación de la genealogía Parejas de conejos
Comienzo del mes 1 Nace una pareja de conejos (pareja A). 1 pareja en total.
Fin del mes 1 La pareja A tiene un mes de edad. Se cruza la pareja A. 1+0=1 pareja en total.
Fin del mes 2 La pareja A da a luz a la pareja B. Se vuelve a cruzar la pareja A. 1+1=2 parejas en total.
Fin del mes 3 La pareja A da a luz a la pareja C. La pareja B cumple 1 mes. Se cruzan las parejas A y B. 2+1=3 parejas en total.
Fin del mes 4 Las parejas A y B dan a luz a D y E. La pareja C cumple 1 mes. Se cruzan las parejas A, B y C. 3+2=5 parejas en total.
Fin del mes 5 A, B y C dan a luz a F, G y H. D y E cumplen un mes. Se cruzan A, B, C, D y E. 5+3=8 parejas en total.
Fin del mes 6 A, B, C, D y E dan a luz a I, J, K, L y M. F, G y H cumplen un mes. Se cruzan A, B, C, D, E, F, G y H. 8+5=13 parejas en total.
... ... ...
... ...

Nota: al contar la cantidad de letras distintas en cada mes, se puede saber la cantidad de parejas totales que hay hasta ese mes.

Página del Liber Abaci de Fibonacci de la Biblioteca Nacional Central de Florencia mostrando (en un recuadro a la derecha) la sucesión de Fibonacci con las posiciones de la secuencia etiquetadas en números romanos y en latín; y el valor de los números en cifras arábigas.

De esta manera Fibonacci presentó la sucesión en su libro Liber Abaci, publicado en 1202. Muchas propiedades de la sucesión de Fibonacci fueron descubiertas por Édouard Lucas, responsable de haberla denominado como se la conoce en la actualidad.[8]

También Kepler describió los números de Fibonacci, y el matemático escocés Robert Simson descubrió en 1753 que la relación entre dos números de Fibonacci sucesivos f_{n+1}/f_n se acerca a la relación áurea fi (\phi) cuando n tiende a infinito; es más: el cociente de dos términos sucesivos de toda sucesión recurrente de orden dos tiende al mismo límite. Esta sucesión tuvo popularidad en el siglo XX especialmente en el ámbito musical, en el que compositores con tanto renombre como Béla Bartók, Olivier Messiaen, la banda Tool y Delia Derbyshire la utilizaron para la creación de acordes y de nuevas estructuras de frases musicales.

Definición recursiva

Chimenea con la sucesión de Fibonacci.

Los números de Fibonacci quedan definidos por la ecuación:

(3)f_n = f_{n-1} + f_{n-2}\,

partiendo de dos primeros valores predeterminados:

f_0 = 0\,
f_1 = 1\,

se obtienen los siguientes números:

para n = 2,3,4,5,\ldots

Esta manera de definir, de hecho considerada algorítmica, es usual en Matemática discreta.

Es importante definir f_0 = 0\, para que se pueda cumplir la importante propiedad de que:

f_n divide a f_{m*n}, para cualquier  m, n >= 1 .

Representaciones alternativas

Para analizar la sucesión de Fibonacci (y, en general, cualquier sucesión) es conveniente obtener otras maneras de representarla matemáticamente.

Función generadora

Una función generadora para una sucesión cualquiera a_0,a_1,a_2,\dots es la función f(x) = a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+\cdots, es decir, una serie formal de potencias donde cada coeficiente es un elemento de la sucesión. Los números de Fibonacci tienen la función generadora

(4)f\left(x\right)=\frac{x}{1-x-x^2}

Cuando esta función se expande en potencias de x\,, los coeficientes resultan ser la sucesión de Fibonacci:

\frac{x}{1-x-x^2}=0x^0+1x^1+1x^2+2x^3+3x^4+5x^5+8x^6+13x^7+\cdots

Fórmula explícita

La definición de la sucesión de Fibonacci es recurrente; es decir que se necesitan calcular varios términos anteriores para poder calcular un término específico. Se puede obtener una fórmula explícita de la sucesión de Fibonacci (que no requiere calcular términos anteriores) notando que las ecuaciones (1), (2) y (3) definen la relación de recurrencia

f_{n+2}-f_{n+1}-f_n=0\,

con las condiciones iniciales

f_0=0\, y f_1=1\,

El polinomio característico de esta relación de recurrencia es t^2-t-1=0, y sus raíces son

t=\frac{1\pm\sqrt 5}{2}

De esta manera, la fórmula explícita de la sucesión de Fibonacci tendrá la forma

f_n=b\left(\frac{1+\sqrt5}2\right)^n+d\left(\frac{1-\sqrt5}2\right)^n.[9]

Si se toman en cuenta las condiciones iniciales, entonces las constantes b y d satisfacen la ecuación anterior cuando n = 0 y n = 1, es decir que satisfacen el sistema de ecuaciones

\left.\begin{array}{rcl}b+d & = & 0 \\ b\left(\frac{1+\sqrt5}2\right)+d\left(\frac{1-\sqrt5}2\right)&=&1\end{array}\right\}

Al resolver este sistema de ecuaciones se obtiene

b=\frac1{\sqrt5},d=-\frac1{\sqrt5}

Por lo tanto, cada número de la sucesión de Fibonacci puede ser expresado como

(5)f_n=\frac1{\sqrt5}\left(\frac{1+\sqrt5}2\right)^n-\frac1{\sqrt5}\left(\frac{1-\sqrt5}2\right)^n

Para simplificar aún más es necesario considerar el número áureo

\varphi=\frac{1+\sqrt5}2

de manera que la ecuación (5) se reduce a

(6)f_n=\frac{\varphi^n-\left(1-\varphi\right)^{n}}{\sqrt5}

Esta fórmula se le atribuye al matemático francés Édouard Lucas, y es fácilmente demostrable por inducción matemática. A pesar de que la sucesión de Fibonacci consta únicamente de números naturales, su fórmula explícita incluye al número irracional \varphi\,. De hecho, la relación con este número es estrecha.

Forma matricial

Otra manera de obtener la sucesión de Fibonacci es considerando el sistema lineal de ecuaciones

\left . \begin{array}{rcl}
          f_{n} &=& f_{n} \\
f_{n-1} + f_{n} &=& f_{n+1}
\end{array} \right \}

Este sistema se puede representar mediante su notación matricial como

\begin{bmatrix}0&1\\1&1\end{bmatrix}\begin{bmatrix}f_{n-1}\\f_{n}\end{bmatrix} = \begin{bmatrix}f_{n}\\f_{n+1}\end{bmatrix}

Conociendo a f_0=0 y f_1=1, al aplicar la fórmula anterior n veces se obtiene

(7)\begin{bmatrix}0&1\\1&1\end{bmatrix}^n\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}f_{n}\\f_{n+1}\end{bmatrix}

Una vez aquí, simplemente tenemos que diagonalizar la matriz, facilitando así la operación de potenciación, y obteniendo por tanto la fórmula explícita para la sucesión que se especificó arriba.

y más aún

(8)\begin{bmatrix}0&1\\1&1\end{bmatrix}^n=\begin{bmatrix}f_{n-1}&f_n\\f_n&f_{n+1}\end{bmatrix}

Estas igualdades pueden probarse mediante inducción matemática.

Propiedades de la sucesión

Al construir bloques cuya longitud de lado sean números de Fibonacci se obtiene un dibujo que asemeja al rectángulo áureo (véase Número áureo).

Los números de Fibonacci aparecen en numerosas aplicaciones de diferentes áreas. Por ejemplo, en modelos de la crianza de conejos o de plantas, al contar el número de cadenas de bits de longitud n que no tienen ceros consecutivos y en una vasta cantidad de contextos diferentes. De hecho, existe una publicación especializada llamada Fibonacci Quarterly[10] dedicada al estudio de la sucesión de Fibonacci y temas afines. Se trata de un tributo a cuán ampliamente los números de Fibonacci aparecen en matemáticas y sus aplicaciones en otras áreas. Algunas de las propiedades de esta sucesión son las siguientes:

\lim_{n\to\infty}\frac{f_{n+1}}{f_n}=\varphi

Este límite no es privativo de la Sucesión de Fibonacci. Cualquier sucesión recurrente de orden 2, como la sucesión 3, 4, 7, 11, 18,..., lleva al mismo límite. Esto fue demostrado por Barr y Schooling en una carta publicada en la revista londinense "The Field" del 14 de diciembre de 1912. Los cocientes son oscilantes; es decir, que un cociente es menor al límite y el siguiente es mayor. Los cocientes pueden ordenarse en dos sucesiones que se aproximan asintóticamente por exceso y por defecto al valor límite.
f_n=\frac{\alpha^n-\beta^n}{\alpha-\beta} y f_n\approx\frac{\alpha^n}{\sqrt 5}\,
f_n=\frac{f_{n-2}+f_{n+1}}2
f_{n+1}= f_{n} * 2 - f_{n-2}
f_0+f_1+f_2+\cdots+f_n=f_{n+2}-1
f_0-f_1+f_2-\cdots+(-1)^nf_n=(-1)^nf_{n-1}-1


f_1+f_3+f_5+\cdots+f_{2n-1}=f_{2n}


f_0+f_2+f_4+\cdots+f_{2n}=f_{2n+1}-1


f_0^2+f_1^2+f_2^2+\cdots+f_n^2=f_nf_{n+1}


f_1f_2+f_2f_3+f_3f_4+\cdots+f_{2n-1}f_{2n}=f_{2n}^2


f_1f_2+f_2f_3+f_3f_4+\cdots+f_{2n}f_{2n+1}=f_{2n+1}^2-1


Si k\geq1, entonces f_{n+k}=f_kf_{n+1}+f_{k-1}f_n\, para cualquier n\geq0


f_{n+1}f_{n-1}-f_n^2=(-1)^n (Identidad de Cassini)


f_{n+1}^2+f_n^2=f_{2n+1}


f_{n+2}^2-f_{n+1}^2=f_nf_{n+3}
Phi forma parte de una expresión de la sucesión de Fibonacci.


f_{n+2}^2-f_n^2=f_{2n+2}


f_{n+2}^3+f_{n+1}^3-f_n^3=f_{3n+3}


f_{n}=\varphi ^{n+1}-(f_{n+1})\varphi (con φ = número áureo) o, despejando f(n+1) y aplicando 1/φ = φ-1:


f_{n+1}=\varphi ^{n}+(1-\varphi)f_{n}


\mathrm{mcd}\left(f_n,f_m\right)=f_{\mathrm{mcd}\left(n,m\right)}
Esto significa que f_n\, y f_{n+1}\, son primos relativos y que f_k\, divide exactamente a f_{nk}\,
Los números de Fibonacci son la suma de las diagonales (marcadas en rojo) del triángulo de Pascal.
f_{n+1}=\sum_{j=0}^{\left\lfloor\frac n 2\right\rfloor}\begin{pmatrix}n-j\\j\end{pmatrix}
y más aún
f_{3n}=\sum_{j=0}^n\begin{pmatrix}n\\j\end{pmatrix}2^jf_j

Generalización

Gráfica de la sucesión de Fibonacci extendida al campo de los números reales.

El concepto fundamental de la sucesión de Fibonacci es que cada elemento es la suma de los dos anteriores. En este sentido la sucesión puede expandirse al conjunto de los números enteros como \ldots,-8,5,-3,2,-1,1,0,1,1,2,3,5,8,\ldots de manera que la suma de cualesquiera dos números consecutivos es el inmediato siguiente. Para poder definir los índices negativos de la sucesión, se despeja f_{n-2}\, de la ecuación (3) de donde se obtiene

f_{n-2}=f_n-f_{n-1}\,

De esta manera, f_{-n}=f_n\, si n es impar y f_{-n}=-f_n\, si n es par.

La sucesión se puede expandir al campo de los números reales tomando la parte real de la fórmula explícita (ecuación (6)) cuando n es cualquier número real. La función resultante

f(x)=\frac{\varphi^x-\cos(\pi x)\varphi^{-x}}{\sqrt 5}

tiene las mismas características que la sucesión de Fibonacci:

Una sucesión de Fibonacci generalizada es una sucesión g_0,g_1,g_2,\ldots donde

(9)g_n=g_{n-1}+g_{n-2}\, para n=2,3,4,5,\ldots

Es decir, cada elemento de una sucesión de Fibonacci generalizada es la suma de los dos anteriores, pero no necesariamente comienza en 0 y 1.

Una sucesión de fibonacci generalizada muy importante, es la formada por las potencias del número áureo.

 \varphi^n=\varphi^{n-1}+\varphi^{n-2}.

La importancia de esta sucesión reside en el hecho de que se puede expandir directamente al conjunto de los números reales.

 \varphi^x=\varphi^{x-1}+\varphi^{x-2}.

...y al de los complejos.

 \varphi^z=\varphi^{z-1}+\varphi^{z-2}.

Una característica notable es que, si g_0,g_1,g_2,\ldots es una sucesión de Fibonacci generalizada, entonces

g_n=f_{n-1}g_0+f_ng_1~

Por ejemplo, la ecuación (7) puede generalizarse a

\begin{bmatrix}0&1\\1&1\end{bmatrix}^n\begin{bmatrix}g_0\\g_1\end{bmatrix} = \begin{bmatrix}g_{n}\\g_{n+1}\end{bmatrix}

Esto significa que cualquier cálculo sobre una sucesión de Fibonacci generalizada se puede efectuar usando números de Fibonacci.

Sucesión de Lucas

Gráfica de la sucesión de Lucas extendida al campo de los números reales.

Un ejemplo de sucesión de Fibonacci generalizada es la sucesión de Lucas, descrita por las ecuaciones

La sucesión de Lucas tiene una gran similitud con la sucesión de Fibonacci y comparte muchas de sus características. Algunas propiedades interesantes incluyen:

\lim_{n\to\infty}\frac{l_{n+1}}{l_n}=\varphi
l_n=\varphi^n+(-\varphi)^{-n}
l_0+l_1+l_2+\cdots+l_n=l_{n+2}-1
l_n=f_{n-1}+f_{n+1}~
f_n=\frac{l_{n-1}+l_{n+1}}{5}

Algoritmos de cálculo

Cálculo de f_7 usando el algoritmo 1.

Para calcular el n-ésimo elemento de la sucesión de Fibonacci existen varios algoritmos (métodos). La definición misma puede emplearse como uno, aquí expresado en pseudocódigo:

Algoritmo 1 Versión recursiva (Complejidad O(\varphi^n)\,)

función {\it fib}(n)\,

si n<2\, entonces
devuelve n\,
en otro caso
devuelve {\it fib}(n-1) + {\it fib}(n-2)\,

Usando técnicas de análisis de algoritmos es posible demostrar que, a pesar de su simplicidad, el algoritmo 1 requiere efectuar f_{n+1}-1 sumas para poder encontrar el resultado. Dado que la sucesión f_n crece tan rápido como \varphi^n, entonces el algoritmo está en el orden de \varphi^n. Es decir, que este algoritmo es muy lento. Por ejemplo, para calcular f_{50} este algoritmo requiere efectuar 20.365.011.073 sumas.

Para evitar hacer tantas cuentas, es común recurrir a una calculadora y utilizar la ecuación (6), sin embargo, dado que \varphi es un número irracional, la única manera de utilizar esta fórmula es utilizando una aproximación de \varphi y obteniendo en consecuencia un resultado aproximado pero incorrecto. Por ejemplo, si se usa una calculadora de 10 dígitos, entonces la fórmula anterior arroja como resultado f_{50}=1.258626903\times10^{10} aún cuando el resultado correcto es f_{50}=12586269025. Este error se hace cada vez más grande conforme crece n.

Un método más práctico evitaría calcular las mismas sumas más de una vez. Considerando un par (i,j)\, de números consecutivos de la sucesión de Fibonacci, el siguiente par de la sucesión es (j,i+j)\,, de esta manera se divisa un algoritmo donde sólo se requiere considerar dos números consecutivos de la sucesión de Fibonacci en cada paso. Este método es el que usaríamos normalmente para hacer el cálculo a lápiz y papel. El algoritmo se expresa en pseudocódigo como:

Algoritmo 2 Versión iterativa (Complejidad O(n)\,)

función {\it fib}(n)\,

i\gets 1
j\gets 0
para k\, desde 0\, hasta n-1\, hacer
t\gets i+j
j\gets i
i\gets t
devuelve j\,

Esta versión requiere efectuar sólo n sumas para calcular f_n, lo cual significa que este método es considerablemente más rápido que el algoritmo 1. Por ejemplo, el algoritmo 2 sólo se requiere efectuar 50 sumas para calcular f_{50}.

Calculando f_{100} usando el algoritmo 3.

Un algoritmo todavía más rápido se sigue partiendo de la ecuación (8). Utilizando leyes de exponentes es posible calcular x^n como

x^n=\begin{cases} x & \mbox{si }n=1 \\ \left(x^{\frac n 2}\right)^2 & \mbox{si }n\mbox{ es par} \\ x\times x^{n-1} & \mbox{si }n\mbox{ es impar} \end{cases}

De esta manera se divisa el algoritmo de tipo Divide y Vencerás donde sólo se requeriría hacer, aproximadamente, \log_2(n) multiplicaciones matriciales. Sin embargo, no es necesario almacenar los cuatro valores de cada matriz dado que cada una tiene la forma

\begin{bmatrix} a & b \\ b & a+b \end{bmatrix}

De esta manera, cada matriz queda completamente representada por los valores a y b, y su cuadrado se puede calcular como

\begin{bmatrix} a & b \\ b & a+b \end{bmatrix}^2 = 
\begin{bmatrix}a^2+b^2 & b(2a+b)\\
b(2a+b) & (a+b)^2+b^2\end{bmatrix}

Por lo tanto el algoritmo queda como sigue:

Algoritmo 3 Versión Divide y Vencerás (Complejidad O(\log(n))\,)

función {\it fib}(n)\,

si n\leq0 entonces
devuelve 0\,
i\gets n-1
(a,b) \gets (1,0)
(c,d) \gets (0,1)
mientras i > 0\, hacer
si i\, es impar entonces
(a,b) \gets (db + ca, d(b + a) + cb)
(c,d) \gets (c^2 + d^2, d(2c + d))
i\gets i\div 2
devuelve a+b\,

A pesar de lo engorroso que parezca, este algoritmo permite reducir enormemente el número de operaciones que se necesitan para calcular números de Fibonacci muy grandes. Por ejemplo, para calcular f_{100}, en vez de hacer las 573.147.844.013.817.084.100 sumas del algoritmo 1 o las 100 sumas con el algoritmo 2, el cálculo se reduce a tan sólo 9 multiplicaciones matriciales.

La sucesión de Fibonacci en la naturaleza

Botón de Camomila amarilla mostrando la ordenación en espirales de módulos 21 (color azul) y 13 (color cian). Este tipo de arrollamientos utilizando numeros consecutivos de Fibonacci aparecen en una gran variedad de plantas.

La secuencia de Fibonacci se encuentra en múltiples configuraciones biológicas,[11] donde aparecen números consecutivos de la sucesión, como en la distribución de las ramas de los árboles, la distribución de las hojas en un tallo, los frutos de la piña tropical,[12] las flores de la alcachofa, en las piñas de las coníferas,[13] o en el "árbol genealógico" de las abejas melíferas.[14] Sin embargo, también se han hecho muchas invocaciones infundadas a la aparición de los números de Fibonacci aprovechando su relación con el número áureo en la literatura popular.[15]

Przemysław Prusinkiewicz avanzó la idea de considerar la sucesión de Fibonacci en la naturaleza como un grupo libre.[16]

Ilustración del modelo de Vogel para n=1 ... 500

Un modelo del patrón de distribución de las semillas del girasol fue propuesto por H. Vogel en 1979.[17] Presenta la forma

\theta = \frac{2\pi}{\phi^2} n,\  r = c \sqrt{n}

donde n es el índice de la flor y c es un factor de escala; entonces las semillas se alinean según espirales de Fermat. El ángulo de divergencia, de aproximadamente 137.51°, está relacionado con el número áureo. Debido a que el coeficiente es un número irracional, ninguna semilla tiene ninguna vecina al mismo ángulo respecto al centro, por lo que se compactan eficientemente. Debido a que las aproximaciones racionales al número aúreo son de la forma F(j):F(j + 1), los vecinos más próximos al número de semillas n están tods en n ± F(j) para cada índice j, que depende de r, la distancia al centro. Suele afirmarse que los girasoles y flores similares tienen 55 espirales en una dirección y 89 en la otra (o alguna otra pareja de números adyacentes de la sucesión de Fibonacci), pero esto sólo es cierto en ciertos rangos de radio, generalmente raros (y por ello más notables).[18]

El árbol genealógico de las abejas

Los machos de una colmena de abejas tienen un árbol genealógico que cumple con esta sucesión. El hecho es que un zángano (1), el macho de la abeja, no tiene padre, pero sí que tiene una madre (1, 1), dos abuelos, que son los padres de la reina (1, 1, 2), tres bisabuelos, ya que el padre de la reina no tiene padre (1, 1, 2, 3), cinco tatarabuelos (1, 1, 2, 3, 5), ocho trastatarabuelos (1, 1, 2, 3, 5, 8) y así sucesivamente, cumpliendo con la sucesión de Fibonacci.

Recientemente, un análisis histórico-matemático acerca del contexto de Leonardo de Pisa y la proximidad de la ciudad de Bejaia, una importante exportadora de cera en los tiempos de Leonardo (de la cual proviene el nombre en francés de esta ciudad, "Bougie", que significa "vela"), ha sugerido que fueron los criadores de abejas de Bejaia y el conocimiento de la ascendencia de las abejas lo que inspiró los números Fibonacci más que el modelo de reproducción de conejos.[19]

Dígitos en la sucesión de Fibonacci

Fibonaccis Traum, Martina Schettina 2008, 40 x 40 cm

Una de las curiosidades de dicha serie son los dígitos de sus elementos:

Divisibilidad

Véase también

Referencias

  1. John Hudson Tiner (2004). Exploring the World of Mathematics: From Ancient Record Keeping to the Latest Advances in Computers. Master Books división de New Leaf Publishing Group. ISBN 9781614581550.
  2. La leyenda que motivó esta sucesión "empezó con una pareja de conejos". Vorobiov: Números de Fibonacci
  3. Singh, Parmanand (1985), «The So-called Fibonacci numbers in ancient and medieval India», Historia Mathematica 12 (3): 229–44, doi:10.1016/0315-0860(85)90021-7
  4. Knuth, Donald (1968), The Art of Computer Programming 1, Addison Wesley, ISBN 81-7758-754-4, «Antes de que Fibonacci escribiera su tratado, la secuencia Fn era estudiada en las escuelas de la India, interesados desde hacía mucho tiempo en patrones rítmicos... tanto Gopala (hacia el año 1135 ) como Hemachandra (hacia 1150) mencionan los números 1,2,3,5,8,13,21 explícitamente [ver P. Singh Historia Math 12 (1985) 229–44]" p. 100 (3d ed)...»
  5. Goonatilake, Susantha (1998), Toward a Global Science, Indiana University Press, p. 126, ISBN 978-0-253-33388-9
  6. Agrawala, VS (1969), Pāṇinikālīna Bhāratavarṣa (Hn.). Varanasi-I: TheChowkhamba Vidyabhawan, «SadgurushiShya writes that Pingala was a younger brother of Pāṇini [Agrawala 1969, lb]. There is an alternative opinion that he was a maternal uncle of Pāṇini [Vinayasagar 1965, Preface, 121. ... Agrawala [1969, 463–76], after a careful investigation, in which he considered the views of earlier scholars, has concluded that Pāṇini lived between 480 and 410 BC»
  7. Laurence Sigler, Fibonacci's Liber Abaci, página 404
  8. Handbook of discrete and combinatorial mathematics, sección 3.1.2
  9. Pareciera que surge de modo natural la raíz cuadrada de cinco, número irracional pura creación humana
  10. Fibonacci Quarterly
  11. Douady, S; Couder, Y (1996), «Phyllotaxis as a Dynamical Self Organizing Process» (PDF), Journal of Theoretical Biology 178 (178): 255–74, doi:10.1006/jtbi.1996.0026
  12. Jones, Judy; Wilson, William (2006), «Science», An Incomplete Education, Ballantine Books, p. 544, ISBN 978-0-7394-7582-9
  13. Brousseau, A (1969), «Fibonacci Statistics in Conifers», Fibonacci Quarterly (7): 525–32
  14. «Marks for the da Vinci Code: B–». Maths. Computer Science For Fun: CS4FN.
  15. Simanek, D. «Fibonacci Flim-Flam». LHUP.
  16. Prusinkiewicz, Przemyslaw; Hanan, James (1989), Lindenmayer Systems, Fractals, and Plants (Lecture Notes in Biomathematics), Springer-Verlag, ISBN 0-387-97092-4
  17. Vogel, H (1979), «A better way to construct the sunflower head», Mathematical Biosciences 44 (44): 179–89, doi:10.1016/0025-5564(79)90080-4
  18. Prusinkiewicz, Przemyslaw; Lindenmayer, Aristid (1990), The Algorithmic Beauty of Plants, Springer-Verlag, pp. 101–7, ISBN 978-0-387-97297-8
  19. (en inglés)T.C.Scott; P. Marketos (2014). «On the Origin of the Fibonacci Sequence». MacTutor History of Mathematics archive, University of St Andrews.
  20. Vorobiov: Números de Fibonacci, Editorial Mir, Moscú. Esta sección exige que la sucesión empiece con 1 y con 0 (1974)
  21. Vorobiov: Ibídem
  22. Vorobiov: Op. cit
  23. A simple vista se puede comprobar esta proposición, revisando la lista correspondiente

Bibliografía

Enlaces externos

This article is issued from Wikipedia - version of the Monday, February 08, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.