Triángulo de Sierpinski

El triángulo de Sierpiński es un fractal que se puede construir a partir de cualquier triángulo.

Triángulo de Sierpinsky

Construcción

Mediante homotecias

Como en la mayoría de los fractales, existen varias maneras de obtener la misma figura (triángulos). En este caso, todos los procesos implican las tres homotecias centradas en los vértices del triángulo, de razón 1/2. Notémoslas ha, hb y hc.
Es fácil observar que ésta figura contiene tres reducciones de sí misma: El triángulo ADE con todo su contenido es una reducción exacta del triángulo ABC, y lo mismo se puede decir de CDF y de BEF. Estos tres clonos son justamente las imágenes de ABC por ha, hb y hc. Y como no quedan puntos del fractal fuera de éstas tres reducciones, se puede escribir (T designa el triángulo de Sierpiński):

T = ha(T) ∪ hb(T) ∪ hc(T)

En otras palabras, T es invariable por la aplicación del plano definida así: f(M) = {ha(M), hb(M), hc(M)}, donde M es un punto cualquiera del plano. Ésta aplicación es más abstracta de lo que parece pues su conjunto de llegada (codominio) no es el plano mismo sino las partes de él, o sea el conjunto de todas las figuras posibles del plano. Se puede extender el dominio de f a las partes del plano así: f(F) = ha(F) ∪ hb(F) ∪ hc(F) donde F es una figura cualquiera del plano.
Visto así, T es un punto fijo de f. El único, aparte del conjunto vacío, de escaso interés geométrico.
T es también un atractor de la aplicación f: si se considera una figura (de preferencia sencilla) T0, y se construyen su imágenes sucesivas T1 = f(T0), T2 = f(T1) = f 2(T0) ... Tn = f n(T0)... entonces la sucesión Tn se aproxima al triángulo de Sierpiński.

En la figura siguiente se ha tomado como figura inicial el triángulo ABC:

Iterando a partir de un punto

También se puede construir T a partir de un punto aleatorio cualquiera M y, para simplificar la programación, escoger al azar una imagen entre ha(M), hb(M) y hc(M) (en cada paso) en vez de tomar siempre las tres. Esto permite hacer un programa sin recursividad, pero claro, trae una desventaja: el número de pasos para obtener una figura satisfactoria será mucho más largo (en cada paso sólo se dibuja un punto):

Relación con el conjunto de Cantor

Si se interseca el triángulo de Sierpiński por una recta paralela a uno de sus costados, se obtiene una figura con un gran parentesco (y parecido) con el conjunto de Cantor.

Dimensión fractal

El triángulo de Sierpinski tiene una dimensión fractal de Hausdorff-Besicovitch coincidente con su dimensión fractal de homotecia igual a:

D_{HB} = \frac{\ln 3}{\ln 2} \approx 1,584962501

Igualmente fácil es encontrar la dimensión fractal usando un sistema iterativo de funciones, formado por tres funciones contractivas con constante de Lipschitz 1/2 de donde se sigue que la dimensión fractal de Hausdorff-Besicovitch satisface:

3\left( \frac{1}{2} \right)^{D_{HB}} = 1 \quad \Leftrightarrow \quad 
D_{HB} = \frac{\ln 3}{\ln 2}

Véase también

Enlaces externos

Referencias

This article is issued from Wikipedia - version of the Thursday, February 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.